среда

Влияние на здоровье пассивного курения

 

Пассивное вдыхание табачного дыма в течение многих столетий считалось небольшим вредом. Это отношение быстро изменилось в 1960-х годах, когда было подтверждено вредное влияние табакокурения на здоровье человека и появились предположения, что табачный дым в воздухе может вызывать серьезные нарушения здоровья у некурящих. С тех пор были опубликованы сотни работ по взаимосвязи загрязнения воздуха табачным дымом и его вредного воздействия на здоровье.

Табачный дым в окружающей среде (ОТД) состоит из побочного дыма, выделяемого из тлеющей сигареты между затяжками (80-90%), и основного дыма, выдыхаемого курильщиком. Основной и побочный дым качественно похожи, но могут в значительной степени различаться по абсолютному и относительному составу. Распространяясь в воздухе, побочный дым быстро меняет свои физические и химические свойства и свой химический состав. Эти изменения делают невозможным определить концентрации отдельных составных частей ОТД или произвести прямое сравнение между биологическим влияние активного и пассивного курения. Тем не менее, активные и пассивные курильщики вдыхают одинаковые токсины и, таким образом, претерпевают одинаковое воздействие на здоровье. Пассивное курение оказывает немедленный эффект на здоровье и вызывает развитие заболеваний.

Немедленный эффект выражается в том, что ОТД содержит ряд реактивных химических компонентов, которые могут вызывать раздражение слизистых оболочек глаз и верхних дыхательных путей, а также вызывать воспаление. В результате пассивные курильщики страдают от заболеваний глаз и носоглотки. Кроме того, многие пассивные курильщики страдают от расстройства желудка, головокружений и головной боли, которые могут длиться до 24 часов.

Определение клеточного состава бронхоальвеолярного лаважа у курящего

Проведено много исследований по определению клеточного состава бронхоальвеолярного лаважа у курящего человека. Табакокурение сопровождается значительным повышением нейтрофилов в лаважной жидкости. У некоторых индивидуумов количество нейтрофилов возрастает в два-три раза по сравнению с исходным уровнем до курения, и еще более высокое их содержание по сравнению с физиологической нормой. Нейтрофилез лаважной жидкости играет патогенетическую роль в развитии обструктивного бронхита и эмфиземы легких, так как с увеличением числа нейтрофилов связывают нарушение в системе протеолиз-антипротеолиз. Это нарушение развивается вследствие повышенного содержания такого фермента как нейтрофильная эластаза, которая увеличивает протеолитическую активность секрета дыхательных путей. С нарушением в системе протеолиз-антипротеолиз связывают деструкцию эластических волокон легких, что является основной патоморфологической чертой эмфиземы легких. Эпителиальные клетки также подвергаются повреждающему действию возросшей протеолитической активности слизи, прилежащей к поверхности реснитчатого эпителия, но первично развивается паралитическое состояние ресничек мерцательного эпителия. Считается, что если человек выкуривает в день 15 сигарет, то двигательная активность ресничек прекращается. При длительном воздействии химических компонентов табачного дыма эпителиальные клетки метаплазируются, грубым морфологическим изменениям предшествует цилиастаз. Нарушение мукоцилиарного клиренса способствует колонизации бактериальной флоры. С присоединением респираторной инфекции патологический процесс дыхательных путей приводит к появлению типичных клинических признаков обструктивного бронхита. Метаплазированные эпителиальные клетки и измененные морфологически и функционально клетки Клара считаются предшественниками раковых клеток.

Определенная часть нерастворимых частиц табачного дыма фагоцитируется альвеолярными макрофагами. Такими элементами являются кадмий, полоний, которые не элиминируются, трудно достигается их ретенция и, наконец, при нарушении мукоцилиарного клиренса они не удаляются или удаляются только частично из просвета дыхательных путей. Альвеолярные макрофаги берут на себя роль клетки, которая в фаголизосомах депонирует нерастворимые частицы табачного дыма. Альвеолярные макрофаги курящего человека имеют характерную песочную окраску цитоплазмы и более интенсивно окрашенные в желтоватый цвет глыбки. Характерные морфологические изменения альвеолярных макрофагов позволяют отнести их в разряд биологических маркеров табакокурилыцика. Другим маркером является повышенное содержание никотина в крови. После того, как человек выкурил сигарету, концентрация никотина в артериальной крови составляет около 80 нг/мл, в венозной крови его концентрация приближается к 20 нг/мл. С высокой концентрацией никотина в крови связывают его гемодинамические эффекты. В грудном молоке матери и в моче ребенка определяют котинин, который может появиться при пассивном курении. У курящего человека высок процент гемоглобина, связанного с СО, и этот показатель считается одним из наиболее важных, отражающих интенсивность табакокурения. С образованием комплекса СО гемоглобин нарушается насыщение кислородом гемоглобина и его отдача в тканях. Так, для курящего человека характерен серый оттенок кожных покровов, который появляется вследствие нарушения транспорта кислорода в ткань.

Биотрансформация химических соединений

Биотрансформация химических соединений в легких состоит из двух фаз. Первую фазу связывают с цитохромом Р450, когда вовлекаются два фермента — железосодержащий цитохром Р450 и NADPH — зависимый от цитохром Р450-редуктазы. Редуктаза имеет генетический контроль, в то время как система Р450 очень обширна и содержит значительное число изоэнзимов и контролируется семейством генов. Вторая фаза биотрансформации связана с семейством глютатион S-трансферазы. Из всех компонентов табачного дыма лучше изучен процесс биотрансформации бензопирена. С проникновением в дыхательные пути химического соединения он метаболизируется системой Р450 до эпоксидного соединения и следующий этап конвертации до образования диол-эпоксида, который вновь метаболизируется при вторичном участии системы Р450, и конечный продукт связывается с ДНК. Все перечисленные соединения — эпоксид, дигидродиол и диол-эпоксид — относятся к группе канцерогенов. Эти соединения практически не метаболизируются глютатионом, возможно, этим можно объяснить их высокую канцерогенность, установленную в экспериментах на животных. Клетками-мишенями в нижних отделах дыхательных путей, которые обеспечивают эффект биотрансформации различных химических компонентов табачного дыма, являются клетки Клара (нецилиарные эпителиальные клетки, количество которых возрастает в терминальных отделах дыхательных путей). Клетки Клара богаты энзиматическими системами — эпоксидной гидролазой, ферментами второй фазы и высоким внутриклеточным содержанием глютатиона. Высокую ферментативную активность в процессе биотрансформации также демонстрируют альвеоциты второго типа, апикальная часть обонятельного эпителия и узелки Bowman, обеспечивая как первую, так и вторую фазу биотрансформации. Таким образом, следует говорить о трех уровнях биотрансформации: обонятельном, бронхиолярном и альвеолярном. Все три уровня отличаются спектром изоэнзимов и ферментативной активностью одной из двух фаз биотрансформации. Можно предполагать, что обонятельный эпителий играет существенную роль в процессе формирования привыкания к табакокурению. Канцерогенетическому влиянию больше предрасположены клетки Клара, так как на них оказывает выраженное депрессивное влияние табачный дым. Возможно, этим можно объяснить, что эта группа клеток преимущественно трансформируется в раковые. R. Richards (1991) исследовал внутриклеточное содержание глютатиона и показал, что он быстро истощается при экспозиции клеток с химическими элементами, входящими в состав табачного дыма. Этот процесс прогрессирует при нарушении связи клеток Клара с экстрацеллюлярным матриксом. Гипотетически можно предположить, что в условиях хронического воспалительного процесса дыхательных путей, когда значительно снижены механизмы защиты и репарации, клетки Клара существенно снижают свою способность биотрансформировать химические компоненты табачного дыма.

Биотрансформация табачного дыма в легких курящего человека

 

Табачный дым состоит из двух фракций: газообразующей (формальдегид и т. д.) и представленной частицами (никель, кадмий и т. д.). R. Richards (1991) приводит усредненные данные по химическому составу табачного дыма (из расчета на одну пачку сигарет).

Фаза взвешенных частиц:

Benzo(a)pyrcne

73-365 micg

Nicotine

438-14 600 mg

N-mtrosonicotine

1-27 mg

Nickel

0-22 mg

Cadmium

584 mcg

210 Polonium

219-7 300 pCi

Газообразующая фаза:

Form aldehyde

146-657 mg

Nitrogen oxidase

117-4 380 mg

Urethane

73-255 mg

Vinyl chloride

7-117 mcg

Если произвести простые расчеты количества химических элементов, которые попадают в дыхательные пути человека вместе с табачным дымом за сутки, неделю, месяц, год и его стаж курения, то, естественно, получаются поистине астрономические цифры, свидетельствующие о длительном токсическом воздействии табачного дыма на организм человека в целом и отдельные его системы. Органы дыхания играют ключевую роль в процесса биотрансформации составляющих компонентов табачного дыма. Накапливаются данные о дифференцированном воздействии на различные легочные структуры отдельных компонентов табачного дыма. Никотин относится к тромбогенным факторам, вызывая повреждение эндотелиальных клеток крупных и мелких сосудов. Химическая реакция никотина и оксида азота приводит к образованию N-нитрозаминов, которые обладают, как показали исследования на животных, выраженным туморогенным эффектом. Кадмий — тяжелый металл, обладает выраженными токсическими свойствами на все клетки органов дыхания (хроническая интоксикация кадмием приводит к целому ряду патологических процессов, известных как кадмиоз). Формальдегид также является высоко токсичным газообразным соединением и вызывает повреждение многих клеточных структур дыхательных путей. Первые данные по содержанию в табаке полония вызывали недоумение. В настоящее время принято считать, что он адсорбируется в табаке из атмосферы, его период полураспада превышает 138 суток. Уретан, бензопирены и хлорид винила относятся к числу канцерогенов. В процессе биотрансформации образуются промежуточные макромолекулы, которые также обладают выраженными альтерирующими свойствами.

Степень никотиновой зависимости

Степень никотиновой зависимости и синдрома отмены на первых порах пытались увязать с количеством сигарет, которые выкуривает человек в течение дня и года. В настоящее время существует несколько классификаций, по критериям которых можно устанавливать степень никотиновой зависимости. Наиболее популярными являются рекомендации ВОЗ, но чаще всего исследовательские работы построены по классификации Fagerstrom. В построении тестов использованы маркеры табачного дыма: тиоционаты, уровень СО в выдыхаемом воздухе, концентрация никотина или котинина в моче, а также других метаболитов в крови, моче или слюне.

Курящие люди, которые имеют высокую степень зависимости от никотина, нуждаются в проведении интенсивного лечения. Если человек выкуривает более 25 сигарет в сутки, и закуривает первую сигарету через 30 минут после пробуждения, то его зависимость от никотина относится к высокой степени; его лечебная программа должна включать более дозы никотинсодержащих лекарств и, как правило, использование комбинированных форм таких препаратов.

В классификациях отводится большое место количеству сигарет, выкуриваемых человеком в течение суток и года. Существует понятие: индекс курящего человека. Он рассчитывается из количества сигарет, выкуриваемых в течение суток, которое необходимо умножить на 12 (число месяцев в году). Если индекс превышает число 200, то курящего человека следует отнести к числу «злостных курильщиков», у которых, как правило, высокая степень зависимости от никотина. В этом случае никотин играет агрессивную роль в возникновении целого ряда заболеваний у человека. В 1997 году Британское торакальное общество приняло решение о снижении значения индекса курящего человека до 140.

Процесс деполяризации

Никотин, подобно ацетилхолину, стимулирует функциональную активность АР, однако процесс деполяризации (блокирование) рецепторов продолжается дольше, чем в случаях ацетилхолинового воздействия. Таким образом, следует учитывать двойное воздействие никотина на АР: первичный эффект состоит в стимуляции АР (функция агониста) и последующий эффект — деполяризация (блокада) функциональной активности рецепторов. Оба эффекта — блокирующий и агонистический — формируют толерантность к табакокурению, поэтому центральная нервная система нуждается в адаптации к токсическому действию никотина и другим компонентам, входящих в состав табачного дыма. Человек, впервые приступающий к табакокурению или возобновляющий его после перерыва, испытывает головокружение, тошноту, мышечную слабость — признаки, свидетельствующие о центральном действии никотина. В последующем курящий человек проходит все этапы толерантности к табакокурению, и у него постепенно формируются различные степени привыкания. Толерантность и привыкание являются строго индивидуальными процессами у человека.

Блокирующие эффекты никотина на центральные АР требуют выбора более сложных нейроадаптационных механизмов, чем его агонистическое воздействие; меняется количество рецепторов, появляются новые подтипы. Гипотетически существует определенное количество АР, которое обеспечивает передачу ацетилхолинового стимула через холинергическую систему. Курение приводит изначально к стимуляции АР с последующей более продолжительной во временном отношении блокаде холинергической трансмиссии. Природа нейроадаптации направлена на развитие защитных механизмов к пролонгированной десенситизации холинергических рецепторов. Длительное курение сопровождается более глубокими расстройствами регуляторной деятельности холинергической системы, и она начинает компенсироваться стимулирующим эффектом никотина. В процессе стимулирующего и блокирующего действия никотина, индивидуального порога чувствительности к нему, количеству холинергических рецепторов, появлению их новых подтипов и уровню их десенситизации и заложен процесс формирования привыкания к табакокурению и его одному из главных компонентов — никотину. При отказе от курения начинается процесс ренейроадаптации, для него характерно избыточное количество АР, что сопровождается гиперхолинергической активностью, и в клинической картине наблюдаются признаки синдрома отмены. Биологический процесс ренейроадаптации направлен на функционирование холинергической системы, свободной от воздействия никотина: вновь меняется количество АР, исчезают некоторые подтипы рецепторов, появившиеся в период адаптации к никотиновой нагрузке, меняется соотношение нормально функционирующих и пролонгированно деполяризованных рецепторов. К. Benhammou et al. (1996,1997) изучали количество связывающих мест никотина на поверхности нейтрофилов и установили, что курение меняет как их количество, так и появляются биофизические изменения мембран нейтрофилов. В процессе отказа от курения постепенно происходит регрессия этих изменений. Авторы объясняют изменение количества связывающих никотин мест процессом десенситизации АР. Временной интервал нейроадаптации строго определен личностью человека и степенью зависимости от никотина. Lebargy et al. (1996) считают, что процесс ренейроадаптации может занять период до 12 месяцев, и человек переживает несколько эпизодов синдрома отмены.

Никотиновая зависимость и ее патофизиологические основы

 

Никотиновая зависимость, являющаяся результатом курения, до последнего времени не рассматривалась как лекарственная зависимость, частично потому, что вредное влияние на здоровье еще не было широко подтверждено, и также потому, что эта привычка не связывалась с очевидной интоксикацией или социальными отклонениями поведения. Время все изменило: обобщение более 2 500 научных работ, сделанное в Американском хирургическом отчете о влиянии курения на здоровье в 1988 году, позволило приравнять сигареты и другие формы табака к наркотикам, а никотин — к препаратам, вызывающим развитие наркомании. Фармакологические и поведенческие процессы, которые определяют табачную наркоманию, очень схожи с аналогичными процессами, которые определяют наркоманию, вызванную героином и кокаином.

По сравнению с пользователями других препаратов, вызывающих зависимость, более высокий процент курильщиков (60%) рассматривают себя наркоманами. Кроме того, среди курильщиков, определивших для себя курение, как фактор, наносящий вред их здоровью и пожелавших бросить курить, только 7% смогли достичь 1 года отказа от курения. Никотиновая зависимость иллюстрируется тем фактом, что 50% больных, перенесших инфаркт миокарда, резекцию легких, возвращаются к курению.

Основное фармакологическое действие никотина состоит в его взаимодействии с ацетилхолинергическими рецепторами (АР). Эти рецепторы локализованы в автономных ганглиях, в местах генерации и трансмиссии холинергических стимулов (Fagerstrom К., Sawe U., 1997). Никотин обладает свойствами прямого воздействия на АР и опосредованно влияет на функциональную активность допаминергических и адренергических рецепторов. Считается, что активация центральных АР при курении оказывает влияние на познавательную деятельность человека, повышается уровень реакций возбуждения, и возможно развитие негативной эмоциональной реакции (Sharwood, 1993). Центрально расположенные АР оказывают влияние на метаболизм, и особого внимания заслуживает их роль в процессах липолиза, с чем и связывают увеличение массы тела при отказе от курения (Perkins, 1993).